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Calculus



Overview

Topics
= Differentiation
= Smoothness
= Multi-dimensional derivatives
= |Integration
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Derivative of a Function

Derivative
d L [+ h) = f(x)
2] )= lim h
Alternative Notation:
d o o dr o
af(x)— f-(z) = Jj_@ |d7f(x)—f (x?
from context variable

repeated differentiation
(higher order derivatives)



Discrete Analogy

Function f

Px

tangent slope

[fR->R
fx+h) = f(x)
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Continuous Case: Difterentiability

differentiable non-differentiable

h h
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/\I FGct 1) = G N FOct 1) = G

f(x+h;_f(x) — fixed value f(x+hf)l_f(x)
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Smoothness

Function Classes
= CO-“Continuous”:

fx) = ;iglc () (limit exists)
= “Differentiable”
/G =lim fO)/ly—xl  (imit exists)

= “Differentiable” = “Continuous”  (but not vice-versa)



Smoothness

Function Classes
= C' - “smoothly differentiable”:
[ exists and is continuous

= C? - "twice smoothly differentiable”:

f'" exists and is continuous
= C" - "I-fold smoothly differentiable”

£ (%) exists and is continuous
= C” -"smooth”;

f permits any order of differentiation



Ditfferentiation is Ill-posed!
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Regularization

= Numerical differentiation needs regularization
= Higher order is more problematic

= Finite differences (larger h)
= Averaging (polynomial fitting) over finite domain



Taylor Approximation

Taylor Approximation to f

1st order

2nd order

3rd order

t Xo

(schematic, not actually computed)



Taylor's Series

Local approximation:

f(x) = f(xp) When is it useful?
d = Good local
T [_f(XO)] (x — %) approximation for

C* functions’
(local convergence)

2 [ g2 f(xo)] (x — xp)?

= Converges globally for
all holomorphically
+ .. extensible functions C¢

k' [d kf(xo)] (x = x)"
+0 ((x — xo)k“)




Rule of Thumb

Derivatives and Polynomials
= Polynomial: f(x) = co + cix + cox? + c3x° ...
= Oth-order derivative:  f(0) = ¢,
« Tstorder derivative: f'(0) = ¢,
= 2nd-order derivative:  f"(0) = 2¢,
= 3d-order derivative: f"'(0) = 6¢;

Rule of Thumb:

= Derivatives correspond to polynomial coefficients
= Estimate derivatives «» polynomial fitting
= Same in multi-variate case



Multivariate Case

Scalar function
ffR" >R

Taylor series

fx) = f(x)
+ Vf(xg) - (x—xg)

4 %(x —x0)" - Hp (%) - (x — %)
_I_...



Multivariate

Derivatives




Partial Derivative

Multivariate Notation

/use curly-d
3 —— () ey Xy aeny X)) =
- Flxq, X+ Ry, x0) — FQX1, 00y Xiy weey X))
h—0 h

Alternative notations:

) = 0 () = £, ()



Parametric Models

>

Parametric Models
= fmaps from parameter domain Q to target space

= Evaluation of f: one point on the model
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Visualization

Derivatives for:
= Functions f: R" - R ("scalar ﬂ€|d")
= Functions f:R - R®™ (“curves”)

= Functions f: R®™ - R™ (general case)



Visualization

Derivatives for:
J Functions f: R® > R (“scalar field”)

= Functions f:R - R"  (‘curves’)

= Functions f: R™ - R™ (general case)

f(x,y)|

X1
height field



Scalar field

Gradient

Vi) =

Gradient

[R" >R
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Gradient

f(x) = f(Xo) ‘|‘ Vf(xo) - (X —Xo)

=
vo

7o)

Direction of steepest ascent
= Local linear approximation:

fx) = f(xo) +Vf(Xo) - (x—Xp)



Hesslan Matrix

Second derivative

0° d 0 d o

a_xlz d0x, 04 d0x,, 0xq

d 0 0° d o

He(x) = | 0x,0x,  9x2 0y, 0,
d o d 0 0°

\Oxl dx, 0x,0x, a_x,%

= “Hessian” matrix (symmetric for f e C?)
= Even higher order: symmetric tensors

/

f(x)



Taylor Approximation

f(x) 1+

2nd order approximation
(schematic)

Second order Taylor approximation:
= Fit a paraboloid to a general function

fx) = f(xXo) + Vf(xp) - (x—X0)

1
+ > (x —x)" - Hp (%) - (x — %)
+0 (]| Ax||°)



Special Cases

Derivatives for:
= Functions f: R™ - R (“scalar field")

J Functions f:R - R®  (“curves”)

= Functions f: R™ - R™ (general case)

curves



Derivatives of Curves

Derivatives of vector valued functions:
= Function f: R - R™ (“curve”)

f1(1)
f(t) = :
fn (1)

= Derivatives for all output dimension

d
Ef(t) =

(G5 ®)

\% fn(®) )

= £'(6) = £(©)



Geometric Meaning
f(©)

t

o

Tangent Vector F)

= ' is the tangent vector

= Higher order derivatives: also vectors
= Physical particle

- First derivative f £ velocity.

- Second derivative f £ acceleration



Special Cases

Derivatives for:
= Functions f: R®™ - R (“scalar field")
= Functions f:R - R"  (‘curves’)

J Functions f: R® - R™ (general case)

“space warp” R - R3



Jacobian Matrix

Jacobian Matrix:

Vi) =]r(x) = Vf(xg, .o, x0)
7 (xy e X) %fl (%)
i (meu;, ...,m) l (axlf;<x>
First-order Taylor approximation:

fx) = f(xo) + s (X0) .1(X_XO)

matrix / vector
product

O f1(X)

0 )

)



Intuition

0,/ (%)

Jacobian Matrix / Vf:

= Think of basis vectors of input space
= Mapped to parallelepiped in output space



Tensor Formulation

General case: tensors using y instead of x,

to avoid index confusion
= Inputx = (xq,...,x,) € R" J
= Developedaty = (v4,...,7,,) € R"
= Qutput f(x) = (fl(x), ...,fm(x)) e R™

ord

fJ(X) ~ z Il z [ f]] (%) (xll 3/11) (xlk YLk)

k=0 (ll
e{1,.. n}k : /

Tensors (dk){l---ik




Are partial derivatives
canonical?




Partial Derivatives — Coordinate Systems

- use curly-d
0
a_xkf(xl' ey Xy eeny Xyg) =
. Fxq, iy Xpe + Ry, X)) — FX1, ey Xigy wee s X))
h—0 h
Problem:

= What happens, if the coordinate system changes?
= Partial derivatives go into different directions then.
= Do we get the same result?



Coordinate Systems

Problem:
= What happens, if the coordinate system changes?
= Partial derivatives go into different directions then.
= Do we get the same result?



Total Derivative
f (o) +Jr(X0) - (x —X¢)

6t @
Xq

First order Taylor approx.: X2
" f(X) = f(X0) +Jr(Xg) - (x —X¢) + 1, (X)
= Converges for C* functions f: R™ - R™:

Iy, (%)
lim —2 =0
x-Xo |[X — X

(“totally differentiable”)




Intuition

Coordinates do not matter for C* (k > 1)

= Differentiation: approximate with linear map
= Linear map is fixed by mapping the basis vectors



Directional Derivative

The directional derivative is defined as:
= Given f:R* > R™ and ve R ||v|| =1
= Directional derivative

0 d
FF() = 2 () = x4 1)

0, f (%)

XZ A

\"

va(X) — Vf(X) ]

= Compute from Jacobian matrix
(total differentiability required)



Integration



Integral

N
+
L A

Integral of a function
= Function f:R—-> R
= |ntegral

be (x)dx

measures signed area under curve



Integral

/
i
Va

Numerical Approximation
= SumM up a series of approximate shapes

= (Riemannian) Definition: limit for baseline — zero
= [ntuition: Sum of numbers in array



Multi-Dimensional Integral

Integration in higher dimensions
= Functions f: R" - R

= Tessellate domain and sum up cuboids




Surface Integrals

Line / Surface / Volume / Hypervolume Elements

v J Foox = lim, 2,00 19
i—1

function f on surface §
f:S->R




Integral Transformations

Integration by substitution: N

f(x) ; ;
S A\ J

b g
f F()dx = f F(9(D) - g’ (D
a g~

Need to compensate

= Speed of movement affects
measured area

= Faster: shrinks measured area
= Slower: inflates

g(1)




Multi-Dimensional Substitution

Transformation of Integrals:

0,8(x)

j f(x)dx = f flg®) - Idet [Vg()]ldy
Q)
Y

—1()

= g € C', invertible

= Jacobian approximates
local behavior of g(-)

= Determinant: local area/volume change

= In particular: |det(Vg(y))| = 1 means
g(-) is area/volume conserving.



