Modelling 1 SUMMER TERM 2020

Calculus

Calculus

Overview

Topics

- Differentiation
- Smoothness
- Multi-dimensional derivatives
- Integration

Linear Approximation

Derivative of a Function

Derivative

$$\frac{d}{dx}f(x) := \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Alternative Notation:

$$\frac{d}{dx}f(x) = \underbrace{f'(x)}_{\text{variable}} = \underbrace{\dot{f}(x)}_{\text{time}}$$
from context variable

$$\frac{d^k}{dt^k}f(x) = f^{(k)}(x)$$
repeated differentiation

(higher order derivatives)

Discrete Analogy

Function f

Think of this:

$$f: \mathbb{R} \to \mathbb{R}$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$f = (y_1, ..., y_n)$$
$$f'(x_i) \approx \frac{y_i - y_{i-1}}{h}$$

Continuous Case: Differentiability

Smoothness

Function Classes

• C⁰ - "Continuous":

$$f(x) = \lim_{y \to x} f(y)$$
 (limit exists)

"Differentiable"

$$f'(x) = \lim_{y \to x} f(y)/|y - x|$$
 (limit exists)

"Differentiable" ⇒ "Continuous" (but not vice-versa)

Smoothness

Function Classes

• C¹ - "smoothly differentiable":

f' exists and is continuous

• C^2 - "twice smoothly differentiable":

f'' exists and is continuous

• C^k - "k-fold smoothly differentiable":

 $f^{(k)}$ exists and is continuous

• *C* [∞] - "smooth":

f permits any order of differentiation

Differentiation is III-posed!

Regularization

- Numerical differentiation needs regularization
 - Higher order is more problematic
- Finite differences (larger h)
- Averaging (polynomial fitting) over finite domain

Taylor Approximation

Taylor Approximation to *f*

(schematic, not actually computed)

Taylor's Series

Local approximation:

$$f(x) \approx f(x_0)$$

$$+ \left[\frac{d}{dx}f(x_0)\right](x - x_0)$$

$$+ \frac{1}{2} \left[\frac{d^2}{dx^2}f(x_0)\right](x - x_0)^2$$

$$+ \cdots$$

$$+ \frac{1}{k!} \left[\frac{d^k}{dx^k}f(x_0)\right](x - x_0)^k$$

$$+ \mathcal{O}\left((x - x_0)^{k+1}\right)$$

When is it useful?

- Good local approximation for C^k functions" (local convergence)
- Converges globally for all holomorphically extensible functions C^{ω}

Rule of Thumb

Derivatives and Polynomials

- Polynomial: $f(x) = c_0 + c_1 x + c_2 x^2 + c_3 x^3 \dots$
 - 0th-order derivative: $f(0) = c_0$
 - 1st-order derivative: $f'(0) = c_1$
 - 2nd-order derivative: $f''(0) = 2c_2$
 - 3rd-order derivative: $f'''(0) = 6c_3$

...

Rule of Thumb:

- Derivatives correspond to polynomial coefficients
- Estimate derivatives ↔ polynomial fitting
- Same in multi-variate case

Multivariate Case

Scalar function

$$f: \mathbb{R}^n \to \mathbb{R}$$

Taylor series

$$f(\mathbf{x}) \approx f(\mathbf{x}_0)$$

$$+ \nabla f(\mathbf{x}_0) \cdot (\mathbf{x} - \mathbf{x}_0)$$

$$+ \frac{1}{2} (\mathbf{x} - \mathbf{x}_0)^{\mathrm{T}} \cdot \mathbf{H}_f(\mathbf{x}_0) \cdot (\mathbf{x} - \mathbf{x}_0)$$

$$+ \cdots$$

Multivariate Derivatives

Partial Derivative

Multivariate Notation

$$\frac{\partial}{\partial x_k} f(x_1, ..., x_k, ..., x_n) := \\ \lim_{h \to 0} \frac{f(x_1, ..., x_k + h, ..., x_n) - f(x_1, ..., x_k, ..., x_n)}{h}$$

Alternative notations:

$$\frac{\partial}{\partial x_k} f(\mathbf{x}) = \partial_k f(\mathbf{x}) = f_{x_k}(\mathbf{x})$$

Parametric Models

Parametric Models

- f maps from parameter domain Ω to target space
- Evaluation of f: one point on the model

Visualization

Derivatives for:

- Functions $f: \mathbb{R}^n \to \mathbb{R}$ ("scalar field")
- Functions $f: \mathbb{R} \to \mathbb{R}^n$ ("curves")
- Functions $f: \mathbb{R}^n \to \mathbb{R}^m$ (general case)

Visualization

Derivatives for:

- Functions $f: \mathbb{R}^n \to \mathbb{R}$ ("scalar field")
- Functions $f: \mathbb{R} \to \mathbb{R}^n$ ("curves")
- Functions $f: \mathbb{R}^n \to \mathbb{R}^m$ (general case)

Gradient

Scalar field

$$f:\mathbb{R}^n\to\mathbb{R}$$

Gradient

$$\nabla f(\mathbf{x}) = \begin{pmatrix} \frac{\partial}{\partial x_1} \\ \vdots \\ \frac{\partial}{\partial x_n} \end{pmatrix} f(\mathbf{x}) = \begin{pmatrix} \frac{\partial}{\partial x_1} f(\mathbf{x}) \\ \vdots \\ \frac{\partial}{\partial x_n} f(\mathbf{x}) \end{pmatrix}$$

Gradient

Direction of steepest ascent

Local linear approximation:

$$f(\mathbf{x}) \approx f(\mathbf{x}_0) + \nabla f(\mathbf{x}_0) \cdot (\mathbf{x} - \mathbf{x}_0)$$

Hessian Matrix

Second derivative

$$\mathbf{H}_{f}(\mathbf{x}) \coloneqq \begin{pmatrix} \frac{\partial^{2}}{\partial x_{1}^{2}} & \frac{\partial}{\partial x_{2}} \frac{\partial}{\partial x_{1}} & \cdots & \frac{\partial}{\partial x_{n}} \frac{\partial}{\partial x_{1}} \\ \frac{\partial}{\partial x_{1}} \frac{\partial}{\partial x_{2}} & \frac{\partial^{2}}{\partial x_{2}^{2}} & \cdots & \frac{\partial}{\partial x_{n}} \frac{\partial}{\partial x_{2}} \\ \vdots & & \ddots & \vdots \\ \frac{\partial}{\partial x_{1}} \frac{\partial}{\partial x_{n}} & \frac{\partial}{\partial x_{2}} \frac{\partial}{\partial x_{n}} & \cdots & \frac{\partial^{2}}{\partial x_{n}^{2}} \end{pmatrix} f(\mathbf{x})$$

- "Hessian" matrix (symmetric for $f \in C^2$)
- Even higher order: symmetric tensors

Taylor Approximation

Second order Taylor approximation:

Fit a paraboloid to a general function

$$f(\mathbf{x}) \approx f(\mathbf{x}_0) + \nabla f(\mathbf{x}_0) \cdot (\mathbf{x} - \mathbf{x}_0)$$

$$+ \frac{1}{2} (\mathbf{x} - \mathbf{x}_0)^{\mathrm{T}} \cdot \mathbf{H}_f(\mathbf{x}_0) \cdot (\mathbf{x} - \mathbf{x}_0)$$

$$+ \mathcal{O}(\|\Delta \mathbf{x}\|^3)$$

Special Cases

Derivatives for:

- Functions $f: \mathbb{R}^n \to \mathbb{R}$ ("scalar field")
- Functions $f: \mathbb{R} \to \mathbb{R}^n$ ("curves")
- Functions $f: \mathbb{R}^n \to \mathbb{R}^m$ (general case)

Derivatives of Curves

Derivatives of vector valued functions:

• Function $f: \mathbb{R} \to \mathbb{R}^n$ ("curve")

$$f(t) = \begin{pmatrix} f_1(t) \\ \vdots \\ f_n(t) \end{pmatrix}$$

Derivatives for all output dimension

$$\frac{d}{dt}f(t) \coloneqq \begin{pmatrix} \frac{d}{dt}f_1(t) \\ \vdots \\ \frac{d}{dt}f_n(t) \end{pmatrix} = f'(t) = \dot{f}(t)$$

Geometric Meaning

Tangent Vector

- f' is the tangent vector
 - Higher order derivatives: also vectors
- Physical particle
 - First derivative $\dot{f} \cong$ velocity.
 - Second derivative $\ddot{f} \cong$ acceleration

Special Cases

Derivatives for:

- Functions $f: \mathbb{R}^n \to \mathbb{R}$ ("scalar field")
- Functions $f: \mathbb{R} \to \mathbb{R}^n$ ("curves")
- Functions $f: \mathbb{R}^n \to \mathbb{R}^m$ (general case)

Jacobian Matrix

Jacobian Matrix:

$$\nabla f(\mathbf{x}) = \mathbf{J}_f(\mathbf{x}) = \nabla f(x_1, \dots, x_n)$$

$$= \begin{pmatrix} \nabla f_1(x_1, \dots, x_n) \\ \vdots \\ \nabla f_m(x_1, \dots, x_n) \end{pmatrix} = \begin{pmatrix} \partial_{x_1} f_1(\mathbf{x}) & \cdots & \partial_{x_n} f_1(\mathbf{x}) \\ \vdots & \ddots & \vdots \\ \partial_{x_1} f_m(\mathbf{x}) & \cdots & \partial_{x_n} f_m(\mathbf{x}) \end{pmatrix}$$

First-order Taylor approximation:

$$f(\mathbf{x}) \approx f(\mathbf{x_0}) + \mathbf{J}_f(\mathbf{x_0}) \cdot (\mathbf{x} - \mathbf{x_0})$$

matrix / vector product

Intuition

Jacobian Matrix / ∇f :

- Think of basis vectors of input space
- Mapped to parallelepiped in output space

Tensor Formulation

General case: tensors

- Input $\mathbf{x} = (x_1, ..., x_n) \in \mathbb{R}^n$
- Developed at $\mathbf{y} = (y_1, ..., y_n) \in \mathbb{R}^n$
- Output $f(\mathbf{x}) = (f^1(\mathbf{x}), ..., f^m(\mathbf{x})) \in \mathbb{R}^m$

$$f^{j}(\mathbf{x}) \approx \sum_{k=0}^{ord} \frac{1}{k!} \sum_{\substack{(i_{1}, \dots, i_{k}) \\ \in \{1, \dots n\}^{k}}} \left[\frac{\partial}{\partial_{i_{1}} \cdots \partial_{i_{k}}} f^{j} \right] (\mathbf{x}_{0}) \left(\mathbf{x}_{i_{1}} - \mathbf{y}_{i_{1}} \right) \cdots \left(\mathbf{x}_{i_{k}} - \mathbf{y}_{i_{k}} \right)$$

$$Tensors \left(d_{k} \right)_{i_{1} \cdots i_{k}}^{j}$$

using y instead of x_o to avoid index confusion

Are partial derivatives canonical?

Partial Derivatives - Coordinate Systems

$$\frac{\partial}{\partial x_k} f(x_1, ..., x_k, ..., x_n) := \\ \lim_{h \to 0} \frac{f(x_1, ..., x_k + h, ..., x_n) - f(x_1, ..., x_k, ..., x_n)}{h}$$

Problem:

- What happens, if the coordinate system changes?
- Partial derivatives go into different directions then.
- Do we get the same result?

Coordinate Systems

Problem:

- What happens, if the coordinate system changes?
- Partial derivatives go into different directions then.
- Do we get the same result?

Total Derivative

First order Taylor approx.:

•
$$f(\mathbf{x}) = f(\mathbf{x_0}) + \mathbf{J}_f(\mathbf{x_0}) \cdot (\mathbf{x} - \mathbf{x_0}) + \mathbf{r}_{\mathbf{x_0}}(\mathbf{x})$$

• Converges for C^1 functions $f: \mathbb{R}^n \to \mathbb{R}^m$:

$$\lim_{\mathbf{x} \to \mathbf{x}_0} \frac{\mathbf{r}_{\mathbf{x}_0}(\mathbf{x})}{\|\mathbf{x} - \mathbf{x}_0\|} = 0$$

("totally differentiable")

Intuition

Coordinates do not matter for C^k $(k \ge 1)$

- Differentiation: approximate with linear map
- Linear map is fixed by mapping the basis vectors

Directional Derivative

The directional derivative is defined as:

- Given $f: \mathbb{R}^n \to \mathbb{R}^m$ and $\mathbf{v} \in \mathbb{R}^n$, $\|\mathbf{v}\| = 1$
- Directional derivative

$$\nabla_{\mathbf{v}} f(\mathbf{x}) = \frac{\partial f}{\partial \mathbf{v}}(\mathbf{x}) \coloneqq \frac{d}{dt} f(\mathbf{x} + t\mathbf{v})$$

$$\nabla_{\mathbf{v}} f(\mathbf{x}) = \nabla f(\mathbf{x}) \frac{\mathbf{v}}{\|\mathbf{v}\|}$$

 Compute from Jacobian matrix (total differentiability required)

Integration

Integral

Integral of a function

- Function $f: \mathbb{R} \to \mathbb{R}$
- Integral

$$\int_{a}^{b} f(x) dx$$

measures signed area under curve

Integral

Numerical Approximation

- Sum up a series of approximate shapes
- (Riemannian) Definition: limit for baseline → zero
- Intuition: Sum of numbers in array

Multi-Dimensional Integral

Integration in higher dimensions

- Functions $f: \mathbb{R}^n \to \mathbb{R}$
- Tessellate domain and sum up cuboids

Surface Integrals

Line / Surface / Volume / Hypervolume Elements

$$\int_{\mathcal{S}} f(\mathbf{x}) d\mathbf{x} = \lim_{\text{smaller}} \sum_{i=1}^{n} f(\mathbf{x}_i) \cdot |\nabla_i|$$

Integral Transformations

Integration by substitution:

$$\int_a^b f(x)dx = \int_{g^{-1}(a)}^{g^{-1}(b)} f(g(t)) \cdot g'(t)dt$$

Need to compensate

- Speed of movement affects measured area
 - Faster: shrinks measured area
 - Slower: inflates

Multi-Dimensional Substitution

Transformation of Integrals:

$$\int_{\Omega} f(\mathbf{x}) d\mathbf{x} = \int_{g^{-1(\Omega)}} f(g(\mathbf{y})) \cdot |\det [\nabla g(\mathbf{y})]| d\mathbf{y}$$

- $g \in C^1$, invertible
- Jacobian approximates local behavior of $g(\cdot)$
- Determinant: local area/volume change
- In particular: $|\det(\nabla g(\mathbf{y}))| = 1$ means $g(\cdot)$ is area/volume conserving.

